Ribosomal protein uS19 mutants reveal its role in coordinating ribosome structure and function

نویسندگان

  • Alicia M Bowen
  • Sharmishtha Musalgaonkar
  • Christine A Moomau
  • Suna P Gulay
  • Mary Mirvis
  • Jonathan D Dinman
چکیده

Prior studies identified allosteric information pathways connecting functional centers in the large ribosomal subunit to the decoding center in the small subunit through the B1a and B1b/c intersubunit bridges in yeast. In prokaryotes a single SSU protein, uS13, partners with H38 (the A-site finger) and uL5 to form the B1a and B1b/c bridges respectively. In eukaryotes, the SSU component was split into 2 separate proteins during the course of evolution. One, also known as uS13, participates in B1b/c bridge with uL5 in eukaryotes. The other, called uS19 is the SSU partner in the B1a bridge with H38. Here, polyalanine mutants of uS19 involved in the uS19/uS13 and the uS19/H38 interfaces were used to elucidate the important amino acid residues involved in these intersubunit communication pathways. Two key clusters of amino acids were identified: one located at the junction between uS19 and uS13, and a second that appears to interact with the distal tip of H38. Biochemical analyses reveal that these mutations shift the ribosomal rotational equilibrium toward the unrotated state, increasing ribosomal affinity for tRNAs in the P-site and for ternary complex in the A-site, and inhibit binding of the translocase, eEF2. These defects in turn affect specific aspects of translational fidelity. These findings suggest that uS19 plays a critical role as a conduit of information exchange between the large and small ribosomal subunits directly through the B1a, and indirectly through the B1b/c bridges.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Core of Eukaryotic Ribosomal Protein Us19 Functions as a Pivot Point Enhancing Ribosome Flexibility

Title of Document: THE CORE OF EUKARYOTIC RIBOSOMAL PROTEIN US19 FUNCTIONS AS A PIVOT POINT ENHANCING RIBOSOME FLEXIBILITY Alicia Marie Bowen, Doctor of Philosophy, 2015 Directed By: Professor Jonathan D. Dinman, Department of Cell Biology and Molecular Genetics While most ribosomal elements are highly conserved in the three domains of life, over the course of evolution, significant differences...

متن کامل

Ribosomal Protein RPL27a Promotes Female Gametophyte Development in a Dose-Dependent Manner.

Ribosomal protein mutations in Arabidopsis (Arabidopsis thaliana) result in a range of specific developmental phenotypes. Why ribosomal protein mutants have specific phenotypes is not fully known, but such defects potentially result from ribosome insufficiency, ribosome heterogeneity, or extraribosomal functions of ribosomal proteins. Here, we report that ovule development is sensitive to the l...

متن کامل

Ribosomal protein L3 functions as a ‘rocker switch’ to aid in coordinating of large subunit-associated functions in eukaryotes and Archaea

Although ribosomal RNAs (rRNAs) comprise the bulk of the ribosome and carry out its main functions, ribosomal proteins also appear to play important structural and functional roles. Many ribosomal proteins contain long, nonglobular domains that extend deep into the rRNA cores. In eukaryotes and Archaea, ribosomal protein L3 contains two such extended domains tethered to a common globular hub, t...

متن کامل

Prp43p is a DEAH-box spliceosome disassembly factor essential for ribosome biogenesis.

The known function of the DEXH/D-box protein Prp43p is the removal of the U2, U5, and U6 snRNPs from the postsplicing lariat-intron ribonucleoprotein complex. We demonstrate that affinity-purified Prp43p-associated material includes the expected spliceosomal components; however, we also identify several preribosomal complexes that are specifically purified with Prp43p. Conditional prp43 mutant ...

متن کامل

Nuclear Export of Pre-Ribosomal Subunits Requires Dbp5, but Not as an RNA-Helicase as for mRNA Export.

The DEAD-box RNA-helicase Dbp5/Rat8 is known for its function in nuclear mRNA export, where it displaces the export receptor Mex67 from the mRNA at the cytoplasmic side of the nuclear pore complex (NPC). Here we show that Dbp5 is also required for the nuclear export of both pre-ribosomal subunits. Yeast temperature-sensitive dbp5 mutants accumulate both ribosomal particles in their nuclei. Furt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2015